
Octavian Morariu, Theodor Borangiu, Cristina Morariu, Silviu Raileanu

IESS1.6, Bucharest, 2016

Research

Goals

Predictive

capacity

provisioning

mechanism

Queued

resource

allocation bus

architecture

Adaptive

resource

allocation in

private CMfg

 Implement scalability of CMfg based on predefined rules
evaluated against real-time metrics:

Development of a cloud based elastic system, capable to automatically
increase and decrease its capacity based on real time load without the
intervention of the system administrator.

 Set up a predictive scalability model based on repetitive usage patterns
to assure better resource utilization in private CMfg RT applications
(MES-mixed batch planning and product scheduling, IED-OH execution)

 Design a queued resource allocation bus architecture
extended with computation of alternative schedules:
 Adding 2 key abilities for decision support: 1) offer alternative schedules;

2) use federated resources for request fulfillment (from 2 Cloud systems)

 Set up an adaptive provisioning mechanism for optimal
resource allocation

 Improve predictability of resource utilization in private CMfg – adjust
automatically resource allocation according to RT capacity requirements

CMfg moves from production-oriented manufacturing processes to
customer- and service-oriented manufacturing process networks [by
modeling single manufacturing assets as services similar to SaaS or PaaS].

Cloud Manufacturing: service-oriented networked product development
models in which service consumers can configure, select, and use
customized product realization resources and services [from CAE, CARE
software to reconfigurable manufacturing systems].

 all manufacturing resources and abilities for the manufacturing life cycle
- provided in different service models

 Manufacturing resources and abilities can be intelligently sensed &
connected into a wider Internet, automatically
managed and controlled using IoT and
(or) Cloud solutions.

CMfg Taxonomy:
underlying concepts

and technologies

 Levels 0, 1 and 2 represent the process control levels
and their objective is to directly control the physical
shop floor equipment in order to execute the actual
production operations that result in one or more
finished products;

 Level 3 is the MES (Manufacturing Execution System)
level and consists of several activities that have to be
executed in order to prepare, monitor and complete
the production process executed at level 0, 1 and 2;

 Level 4 is the ERP (Enterprise Resource Planning) level
that executes the financial and logistic activities.

 The basic concept of MES and shop
floor virtualization: migration of all
workloads traditionally executed on
physical machines located on the shop
floor to the data centre, specifically to
the private cloud infrastructure as
virtual workloads.

 Run all the control software in a
virtualized environment and keep only
the physical devices on the shop floor.

 This separation between hardware and
software provides high flexibility and
agility to the manufacturing solution.

[IBM CloudBurst platform, University
Politehnica of Bucharest, 2016]

Standard implementing of scalability in
private clouds - based on predefined
thresholds; can be defined in low level
metrics: CPU / memory / disk usage
(IBM Tivoli Monitor uses a Linux based
OS agent to collect real time metrics
and monitor predefined thresholds).

When a threshold is reached a new
workload instance can be provisioned
based on the predefined workflow.

The workflow is executed by IBM Tivoli
Provisioning Manager.

Disadvantage: the provisioning time →
set thresholds at a lower level than
dictated by capacity requirements, to
allow time for the new instance to
become active before the capacity is
exceeded by user load.

New proposal:

 A predictive mechanism augmenting
the generic threshold- based
implementation, by recognizing
repetitive (daily and weekly) pattern
in application usage.

 The model predicts the future requi-
red capacity and acts before the
threshold is reached, allowing setting
higher levels for thresholds and so
avoid false positive triggers.

 Implementation for IBM CloudBurst
2.1 on System x.

 The Elastic Scalability Module (ESM):
encapsulates the predictive
algorithm, augmenting the
CloudBurst 2.1 threshold
mechanism.

 The ESM collects RT usage metrics provided by IBM Tivoli Usage Manager
(TUM):

 Two operational phases:

 The learning phase: ESM stores the metrics provided by IBM TUM per day
for each day of the week in a relational database together with the
threshold trigger events generated by TUM. This is done several times
until a pattern is established.

 The driving phase: ESM sends predictive provisioning instructions to the
IBM Tivoli Provisioning Manager (TPM), eventually replacing the trigger
based behaviour of TUM).

 Overall goal of the ESM algorithm:
keep the capacity as close as
possible to the average user load
using historical usage patterns.

 [Current provisioned capacity – the

estimated capacity] / the instance

capacity = the number of instances that

need to be provisioned or de-provisioned

Resource
allocation
architecture with
Request Queue
Bus (RQB)

 Tivoli Service Automation Manager
(TSAM) software stack manages the
resources in the private cloud. As
part of the Tivoli stack the Tivoli
Service Request Manager (TSRM)
allows customers to create tickets
that trigger an internal approval
workflow. TSRM implements initial
ticket validation that prevents
customers to create requests if the
system does not have the required
capacity for provisioning in the in
the required interval.

 Adding two key abilities for
decision support:

 the ability to offer alternative schedules for customers in case the resources
are not available at the required time, instead of a simple request deny of
the request either;

 the ability to use federated resources for request fulfillment, in the scenario
where two or more private clouds are interconnected

Request Queue Bus (RQB). Functionalities:

 Requests are submitted by the customers through a user portal

 The requests are queued for processing rather than assigned directly for an

immediate decision.

 The user portal allows creation of requests based on the services catalogue offered

by the underlying private cloud software stack, without performing a prior validation

in regards to the available capacity in the time interval required.

 The request object data structure contains references to the service catalogue items

selected together with the associated amounts.

 The request data structure contains the initial time interval for which the respective

resources should be provisioned.

 The user portal assembles the request object and submits it in the resource

allocation queue.

 The user portal also allows customers to track requests created and provide further

responses on the options for request fulfillment provided by the system.

The request lifecycle

 Cycle start: the request is created by the
customer (contains the requested resources
along with the initial timeframe).

 If the resources are available, an approval
workflow is initiated.

 If approved, the resources are provisioned or a
resource reservation is created.

 If the resources are not available in the
timeframe requested, the alternatives are
computed and presented to the customer for
acceptance:

 If one is accepted, the approval workflow
is initiated and normal provisioning is
started.

 If not, the request remains in the request
queue and policies are re-applied.

Interactive Scheduler Architecture

Alternative schedules are computed
based on two factors:

 timeframe requested and

 possibility to fulfill the request with
burst resources (resources provided
by interconnected private clouds)

Algorithm - computing alternatives:

 shift timeframe with preconfigured

intervals in both directions on timeline;

 for each shift, the resource availability is

computed; the closest alternatives relati-

ve to the timeframe, are added to the

set of options presented to the customer

 evaluate the feasibility of each option

against a set of constrains obtained in

real time from:

• Demand Monitor (summed current

demand for: CPU, memory, storage)

• Resource Monitor (RT system load:

current available local capacity &

burst capacity)

• Predictive Module (predictive load

information based on usage patterns

stored in a persistent storage)

Goal: implement an adaptive behaviour to automatically adjust the resource
allocation for cloud applications according to real time capacity requirements.

Effect: improves predictability of resource utilization.

Principle: active monitoring of cloud applications (MES, web, J2EE, database)
and recording multiple factors (CPU, memory, I/O, networking) provide
relevant information = complex triggers for the cloud adaptive behaviour and
smart resource allocations.

Solution: service oriented mechanism:

 Assures adaptability of a CMfg private cloud system to workload
fluctuations, capable of intelligent resource allocation in terms of
amount and co-locations based on virtualization optimization.

 Real time monitoring information is gathered with a multi-agent
monitoring system capable of multi-layer and multi-factor monitoring.

 The smart resource allocation is achieved with a distributed genetic
algorithm that considers the workload characteristics in conjunction with
physical optimum allocation and the current load.

OS CPU Profile IO Profile

Windows High Low

Windows Low High

Linux High Low

Linux Low High

Workload Profiles

Example: a MES workload
runs parallel processing
applications which:

 have a CPU intensive
profile (mixed batch
planning and product
scheduling) or

 run a high end relational
database system, with an
IO intensive profile
(inventory, Supply Chain
Mngmt).

Metric Definition Type

CPU (OS Layer) Threshold Simple

Memory (OS Layer) Threshold Simple

Disk IO (OS Layer) Threshold Simple

Network (OS Layer) Threshold Simple

Combined (OS Layer) Rule Complex

CPU (App Layer) Rule Simple

Memory (App Layer) Rule Simple

Disk IO (App Layer) Rule Simple

Network (App Layer) Rule Simple

Application Defined Rule Simple

Combined (App Layer) Rule Complex

Event Triggers invoking adaptive resource allocation

 Sources of events triggering adaptive resource
allocation: 1) the monitoring layer and 2) the
application itself.

 A MAS gathers RT data at multiple layers in the cloud
application stack: hypervisor, OS, application layers.
The data generated by the monitoring solution sends
multi-factor data (CPU, Memory, IO, Network) in a
repository in a continuum stream.

 A central monitoring agent triggers events based on a
set of rules: single metric / complex multi-factor

conditions.

Adaptive provisioning mechanism (APM) architecture:

1) MAS monitoring solution, gathers real
time metrics from both OS layer and

application layer; 2) a multi-factor monitor
triggers reconfiguration events based on
administrator defined rules; 3) a business

process manages the life cycle of the cloud
project ; 4) a genetic algorithm for optimal

resource allocation in the private cloud

APM function:

Scale up and down the resources
required by the application, as:
“when to scale?”, “what to scale?”
and “how to scale?”

Solution implemented as a BPEL
process, runs on top SOA engine

Event Manager:

 Matches the events triggered
with the corresponding BPEL
process and

 Sequences the events that
might be triggered for the
same process in short
amounts of time. Useful in:

a) reducing the impact of
resource allocation
overhead & configuration on
decision making process,

b) eliminating duplicate
events

Data Objects class diagram

Design of the GA prototype:

 The AllocationSolution class holds the alloca-
tion information of the cloud resource to the
workload in the scope of a project. The
allocation solution class instance has a
reference to the Project for which the
allocation is computed.

 The CloudResource class represents the top of
a hierarchy of cloud resources like: blade
server, memory unit, virtual core, network,
disk storage and so on.

 The Workload class has a reference to the
cloud service catalogue and represents a
virtual machine template. Each workload is
described by a WorkloadType.

 The Organization class holds a reference to all
the projects the organization has.

 GA starts with a randomly generated
population of solutions

 By applying operations as selection,
crossover and mutation on
individuals, the GA creates new
generations evaluating the fitness of
each individual of the population in
the process.

 When the fitness level in the
population reaches a satisfying value,
a set of solutions are obtained.

AllocationSolution references
(GA individual)

The AllocationSolution instances are the actual individuals
in the solutions population of the GA.

The fitness function :
Computes the fitness value for
each population’s individual, by
evaluating a set of conditions
against the schedule instance:

Condition1 (Hard) Total Load:
iterates all the time slots and
computes a sum of all workloads
that are scheduled for each blade

Condition2 (Hard) Possible
Allocation: Checks if the resource
allocation scheme is valid

Condition3 (Soft) Memory Over-
commitment: Checks that for each
time slot only a single set of
WorkloadType is scheduled

Condition4 (Soft) CPU Intensive:
Iterates physical CPUs & checks
that no more than 2 CPU intensive
WorkloadTypes (WkT) are
scheduled at the same time

Condition5 (Soft) IO Intensive: Checks that for each SAN

there are no more than 2 IO intensive WkT scheduled

Condition6 (Soft) Uniform Distribution: computes a factor

characterizing the distribution of workloads. Goal: obtain

a uniform distribution of workloads across all blades.

Conclusions. Closed loop QoS monitoring in private CMfg

A multilayer QoS monitoring architecture was implemented on top of IBM

CloudBurst 2.1 private manufacturing cloud solution designed and integrated with

IBM TSAM product stack

A set of metrics are collected in this implementation at various layers. From Tivoli

Stack: CPU, RAM Usage, Disk I/O rate, Network I/O; from VMware hypervisor:

workload uptime, CPU quota usage, memory quota usage, virtual disk usage.

At OS layer, the metrics collected are: CPU usage per process and per kernel/user,

memory usage per process, disk I/O per device, network traffic/interface.

Database statistics are collected with a specialized ANT job that computes average

usage reports in terms of queries/second, top queries & database locks.

The extension built for the IBM CloudBurst 2.1 system is capable of preventive and

adaptive resource provisioning on an ISA-95 MES level.

Future work: integrate field device data in CMfg through Industrial IoT.

